Şekildeki parabollerin tepe noktaları T(r, k) dir. Parabol x = r doğrusuna göre simetrik olan bir şekildir. Bunun için, parabolün x eksenini kestiği noktaların apsisleri olan x1 ile x2 nin aritmetik ortalaması r ye eşittir. Bu durumu kuralla ifade edebiliriz. Kural
f(x) = ax2 + bx + c fonksiyonunun grafiğinin (parabolün) tepe noktası T(r, k) ise, |
Sonuç
f(x) = ax2 + bx + c fonksiyonunun grafiğinin (parabolün) tepe noktası T(r, k) ise, bu parabolün simetri ekseni x = r doğrusudur. |
Uyarı
f(x) = ax2 + bx + c ifadesi ikinci dereceden fonksiyonunun en genel halidir. Bu fonksiyon düzenlenerek f(x) = a(x – r)2 + k hâline dönüştürülürse, tepe noktasının T(r, k) olduğu görülür. |
Kural
fonksiyonunun grafiğinde (parabolde), a > 0 ise kollar yukarıya doğru, a < 0 ise kollar aşağıya doğrudur. Buna göre, f(x) = ax2 + bx + c fonksiyonunun grafiği aşağıdaki gibidir:
Parabolün en alt ya da en üst noktasına tepe noktası denir. |