Reklamlar

Aşağıdaki şekilde y = f(x) eğrisi y = g(x) eğrisi x = a ve x = b doğrusu arasında kalan taralı bölge verilmiştir.

     

Bölge (ya da eğriler) hangi konumda olursa olsun, yukarıdaki eğrinin denkleminden aşağıdaki eğrinin denkleminin çıkarılmasıyla oluşan belirli integral, bölgenin alanını ifade etmektedir.

     

Bu sayfadan sonraki sayfada verilen şekilde x = f(y) eğrisi x = g(y) eğrisi y = a ve y = b doğrusu arasında kalan taralı bölge verilmiştir.

     

Bölge (ya da eğriler) hangi konumda olursa olsun, sağdaki eğrinin denkleminden soldaki eğrinin denkleminin çıkarılmasıyla oluşan belirli integral, bölgenin alanını ifade etmektedir.

     

Kural

 1. Hangi konumda olursa olsun, alan daima pozitif bir reel sayı ile ifade edilir.

 2. Belirli integralin değeri bir reel sayıdır.

 3. İntegral ile alan ilişkilendirilirken,

 a. Alan x ekseninin üst kısmındaysa, alanı ifade eden sayı integrali de ifade eder.

 b. Alan x ekseninin alt kısmındaysa, alanı ifade eden sayının toplama işlemine göre tersi integrali ifade eder.

Kural

y = f(x) parabolünün tepe noktasının apsisi r ordinatı
k; x = f(y) parabolünün tepe noktasının apsisi n ordinatı m dir.

  Yukarıda solda verilen parabolde taralı alan,

 

Yukarıda sağda verilen parabolde taralı alan,

 

Yandaki şekilde y = f(x) fonksiyonunun grafiği verilmiştir. Taralı alan,

  Bu kurallar bütün paraboller için geçerlidir.

 

Kural

Şekilde y = f(x) fonksiyonunun grafiği verilmiştir.

     

Ekleyen: by_ram | Okunma Sayısı: 2255
Çözümlü Sorular
9.Sınıf Biyoloji Soruları ve Çözümleri
9.Sınıf Türk Dili ve Edebiyatı Soruları ve Çözümleri
Telif Hakkı Hakkında:

Bu sayfada yer alan bilgilerin her hakkı, aksi ayrıca belirtilmediği sürece Erguven.net'e aittir. Sitemizde yer alan dosya ve içeriklerin telif hakları dosya ve içerik gönderenlerin kendilerine veya yetki verdikleri kişilere aittir. Sitemiz hiç bir şekilde kâr amacı gütmemektedir ve sitemizde yer alan tüm materyaller yalnızca bilgilendirme ve eğitim amacıyla sunulmaktadır. Telif hakkına sahip olan dosyaları lütfen iletişim bölümünden bize bildiriniz. Dosya 72 saat içerisinde siteden kaldırılır.Telif Hakkı Hakkında|Editör, ziyaretçi ya da üyelerimiz tarafından eklenen hiç bir içerikten erguven.net sorumlu değildir.İLETİŞİM:bey_ram@hotmail.com
Jojobet Girişlericasibomholiganbet girişbahsegeljojobetcasino siteleriDeneme Bonuslarcasibomcasibom girişcasibomcasibom girişcasibomcasibom girişcasibomcasibom girişcasibom 726Bonus veren sitelerCasibom 2024 - 2025Canlı BahisBedava deneme bonusucasibom güncel girişcasibomcasibomcasibom