Reklamlar

1. Konveks Eğriler

f, [a, b] aralığından ye tanımlı türevlenebilir bir fonksiyon olsun.

[a, b] aralığında f ''(x) > 0 ise, f nin grafiği olan eğri konveks (dış bükey) dir. Diğer bir ifadeyle, bükülme yönü yukarı doğrudur. Eğri, teğetlerinin yukarısındadır.

Aşağıdaki grafiklerde verilen eğrilerin üçü de konvekstir.

 

2. Konkav Eğriler

f, [a, b] aralığından ye tanımlı türevlenebilir bir fonksiyon olsun.

a, b] aralığında f ''(x) < 0 ise, f nin grafiği olan eğri konkav (iç bükey) dir. Diğer bir ifadeyle, bükülme yönü aşağı doğrudur. Eğri, teğetlerinin altındadır.

Aşağıdaki grafiklerde verilen eğrilerin üçü de konkavdır.

 

3. Dönüm (büküm) Noktası

f, sürekli olmak üzere, fonksiyonun konvekslikten konkavlığa ya da konkavlıktan konveksliğe geçtiği noktaya dönüm (büküm) noktası denir.

Diğer bir ifadeyle, f nin grafiği olan eğrinin, eğrilik yönünün değiştiği noktaya, dönüm (büküm) noktası denir.

 

Uyarı

x = x0 noktasının dönüm noktası olması, x = x0 da ikinci türevin olmasını garanti etmez. Yani, dönüm noktasında türev tanımlı olmayabilir.

x = x0 ın ikinci türevin kökü olması, x = x0 ın dönüm noktası olmasını garanti etmez. Dönüm noktasında ikinci türevin işaret değiştirmesi gerekir.

x = x0 dönüm noktası ve bu noktada ikinci türev tanımlı ise, ikinci türev sıfırdır.

Uyarı

     

y = f(x) fonksiyonunun grafiğine göre c büküm noktasının apsisi ise aşağıdakiler söylenebilir.

 1. (a < x < b ve d < x < e ) için fonksiyon azalandır.
Bu aralıkta f '(x) < 0 dır.

  2. b < x < d için fonksiyon artandır. Bu aralıkta f '(x) > 0 dır.

  3. a < x < c için f ''(x) > 0 dır.

 4. x = b de f(x) in yerel minimumu, x = d de f(x) in yerel maksimumu vardır. Bu nedenle, f '(b) = 0 ve f '(d) = 0 dır.

 5. x = c de f(x) in dönüm noktası vardır. Bu nedenle,
f ''(c) = 0 dır.

Ekleyen: by_ram | Okunma Sayısı: 2825
Çözümlü Sorular
9.Sınıf Biyoloji Soruları ve Çözümleri
9.Sınıf Türk Dili ve Edebiyatı Soruları ve Çözümleri
Telif Hakkı Hakkında:

Bu sayfada yer alan bilgilerin her hakkı, aksi ayrıca belirtilmediği sürece Erguven.net'e aittir. Sitemizde yer alan dosya ve içeriklerin telif hakları dosya ve içerik gönderenlerin kendilerine veya yetki verdikleri kişilere aittir. Sitemiz hiç bir şekilde kâr amacı gütmemektedir ve sitemizde yer alan tüm materyaller yalnızca bilgilendirme ve eğitim amacıyla sunulmaktadır. Telif hakkına sahip olan dosyaları lütfen iletişim bölümünden bize bildiriniz. Dosya 72 saat içerisinde siteden kaldırılır.Telif Hakkı Hakkında|Editör, ziyaretçi ya da üyelerimiz tarafından eklenen hiç bir içerikten erguven.net sorumlu değildir.İLETİŞİM:bey_ram@hotmail.com
Jojobet Girişlericasibomholiganbet girişbahsegeljojobetcasino siteleriDeneme Bonuslarcasibomcasibom girişcasibomcasibom girişcasibomcasibom girişcasibomcasibom girişcasibom 726Bonus veren sitelerCasibom 2024 - 2025Canlı BahisBedava deneme bonusucasibom güncel girişcasibomcasibomcasibom