a, b, c Î, a ¹ 0 ve b ¹ 0 olmak üzere, ax + by + c = 0 denklemine birinci dereceden iki bilinmeyenli denklem denir. Bu denklem düzlemde bir doğru belirtir. Doğru üzerindeki bütün noktaların oluşturduğu ikililer denklemin çözüm kümesidir. Buna göre, ax + by + c = 0 denkleminin çözüm kümesi birçok ikiliden oluşur. Birden fazla iki bilinmeyenli denklemden oluşan sisteme birinci dereceden iki bilinmeyenli denklem sistemi denir. Çözüm Kümesinin Bulunması Birinci dereceden iki bilinmeyenli denklem sistemlerinin çözüm kümesi; yok etme yöntemi, yerine koyma yöntemi, karşılaştırma yöntemi, grafik yöntemi, determinant yöntemi gibi yöntemlerden biri ile yapılır. Biz burada üçünü vereceğiz. a. Yok Etme Yöntemi: Değişkenlerden biri yok edilecek biçimde verilen denklem sistemi düzenlenir ve taraf tarafa toplanır. b. Yerine Koyma Yöntemi: Verilen denklemlerin birinden, değişkenlerden biri çekilip diğer denklemde yerine yazılarak sonuca gidilir. c. Karşılaştırma Yöntemi: Verilen denklemlerin ikisinden de aynı değişken çekilir. Denklemlerin diğer tarafları karşılaştırılır (eşitlenir). denklem sistemini göz önüne alalım: Bu iki denklemin her birinin düzlemde bir doğru belirttiği göz önüne alınırsa üç durum olduğu görülür. ax + by + c = 0 dx + ey + f = 0 denklem sisteminde, Birinci durum: ise, bu iki doğru tek bir noktada kesişir. Bu durumda, verilen denklem sisteminin çözüm kümesi bir tek noktadan oluşur. İkinci durum: ise, bu iki doğru çakışıktır. Doğru üzerindeki her nokta denklem sistemini sağlar. Bu durumda, verilen denklem sisteminin çözüm kümesi sonsuz noktadan oluşur. Üçüncü durum: ise, bu iki doğru paraleldir. Denklem sistemini sağlayan hiçbir nokta bulunamaz. Bu durumda, verilen denklem sisteminin çözüm kümesi boş kümedir.
a, b, c Î olmak üzere, ax + by + c = 0 denklemi her (x, y) Î2 için sağlanıyorsa a = b = c = 0 dır. |
Taraf tarafa toplandığında veya çıkarıldığında (ya da bir düzenlemeden sonra) değişkenlerden biri sadeleşiyorsa “Yok etme yöntemi” kolaylık sağlar. |
Denklemlerin birinden, değişkenlerden biri kolayca çekilebiliyorsa, “Yerine koyma yöntemi” kolaylık sağlar. |
Her iki denklemden de aynı değişken kolayca çekilebiliyorsa, “Karşılaştırma yöntemi” kolaylık sağlar. |
Ü |
ax + by + c = 0 dx + ey + f = 0 |